As we all know, AC won the “War of the Currents”. The reasoning behind this is that AC voltage is easy to convert up/down with just a ring of iron and two coils. And high voltage allows us to transport current over longer distances, with less loss.

Now, the War of the Currents happened in 1900 (approximately), and our technology has improved a lot since then. We have useful diodes and transistors now, we have microcontrollers and Buck/Boost converters. We can transform DC voltage well today.

Additionally, photovoltaics produces DC naturally. Whereas the traditional generator has an easier time producing AC, photovoltaic plants would have to transform the power into AC, which, if I understand correctly, has a massive loss.

And then there’s the issue of stabilizing the frequency. When you have one big producer (one big hydro-electric dam or coal power plant), then stabilizing the frequency is trivial, because you only have to talk to yourself. When you have 100000 small producers (assume everyone in a bigger area has photovoltaics on their roof), then suddenly stabilizing the frequency becomes more challenging, because everybody has to work in exactly the same rhythm.

I wonder, would it make sense to change our power grid from AC to DC today? I know it would obviously be a lot of work, since every consuming device would have to change what power it accepts from the grid. But in the long run, could it be worth it? Also, what about insular networks. Would it make sense there? Thanks for taking the time for reading this, and also, I’m willing to go into the maths, if that’s relevant to the discussion.

  • barsoap@lemm.ee
    link
    fedilink
    English
    arrow-up
    19
    ·
    3 months ago

    When you have one big producer (one big hydro-electric dam or coal power plant), then stabilizing the frequency is trivial, because you only have to talk to yourself.

    Your frequency is still influenced by a million and more consumers. And that’s before blind currents come into play.

    When you have 100000 small producers (assume everyone in a bigger area has photovoltaics on their roof), then suddenly stabilizing the frequency becomes more challenging, because everybody has to work in exactly the same rhythm.

    …and? Everyone is getting the current frequency via the network, everyone knows what it should be, everyone can do their own small part is speeding it up or slowing it down.

    The actual issue is that huge big turbines have lots of inertia which, through their inertia, naturally stabilise the frequency. On the flip side inverters (like with solar panels) can regulate the frequency actively, what’s iffy is smaller AC generators like wind mills. But then there’s also battery and capacitor banks.

    It’s a thing network engineers have to worry about, but it’s not some insurmountable problem. We’re already doing it. Insular networks have been doing it for ages, e.g. in Germany Berlin’s network wasn’t part of the eastern one and they always used stuff like capacitor banks to stabilise it.


    All that aside yes in the future there’s probably going to be a high voltage DC network in Europe. Less so for private consumers, at least not in the foreseeable future, but to connect up large DC consumers, that is, industry, with DC power sources. If you’re smelting aluminium with solar power going via AC is just pure conversion loss.

    • leds@feddit.dk
      link
      fedilink
      English
      arrow-up
      4
      ·
      3 months ago

      what’s iffy is smaller AC generators like wind mills

      Not so iffy for bigger wind turbines, these also have significant inertia due to the mass of the rotor spinning (with large mass moment) and grid codes demand active grid stabilisation in most countries.

    • gandalf_der_12te@lemmy.blahaj.zoneOP
      link
      fedilink
      English
      arrow-up
      2
      ·
      3 months ago

      All that aside yes in the future there’s probably going to be a high voltage DC network in Europe. Less so for private consumers, at least not in the foreseeable future, but to connect up large DC consumers, that is, industry, with DC power sources. If you’re smelting aluminium with solar power going via AC is just pure conversion loss.

      Thank you, that was exactly what I was looking for. I know about aluminum production processes, and that it requires large amounts of DC power.